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Preface

The inaugural ‘Breeding Focus’ workshop was held in 2014 to outline and discuss avenues for 
genetic improvement of resilience. The Breeding Focus workshop was developed to provide a 
forum for exchange between industry and research across livestock and aquaculture industries. 
The objective of Breeding Focus is to cross-foster ideas and to encourage discussion between 
representatives from different industries because the challenges faced by individual breeding 
organisations are similar across species. This book accompanies the Breeding Focus 2016 
workshop. The topic of this workshop is ‘Breeding Focus 2016 - Improving welfare’.

“Animal welfare means how an animal is coping with the conditions in which it lives. An 
animal is in a good state of welfare if (as indicated by scientific evidence) it is healthy, 
comfortable, well nourished, safe, able to express innate behaviour, and if it is not 
suffering from unpleasant states such as pain, fear, and distress. Good animal welfare 
requires disease prevention and veterinary treatment, appropriate shelter, management, 
nutrition, humane handling and humane slaughter/killing. Animal welfare refers to the 
state of the animal; the treatment that an animal receives is covered by other terms such 
as animal care, animal husbandry, and humane treatment.” (World Organisation for 
Animal Health 2008). 

Animal breeding offers opportunities to improve the state of animals. Existing methodologies 
and technologies used in animal breeding can be used to improve welfare of animals on farm 
while maintaining productivity. Welfare and productivity are not necessarily in opposition 
because several welfare measures are genetically independent from productivity traits. Further, 
it is often economically beneficial to improve welfare traits. These aspects provide ample 
opportunities to improve both welfare and productivity through selective breeding. 

The chapters of this book describe existing frameworks to define welfare of animals and outline 
examples of genetic improvement of welfare of farm animals. A reflection on ethical issues of 
animal breeding and welfare is presented and further avenues for genetic improvement of 
welfare are discussed.

We thank all authors for their contributions to this book and their presentations at the Breeding 
Focus 2016 workshop in Armidale. Each manuscript was subject to peer review by two referees. 
We thank all reviewers who generously gave their time to referee each book chapter. A special 
thank you goes to Kathy Dobos for looking after all details of organising this workshop and for 
her meticulous work on putting this book together. 

Susanne Hermesch and Sonja Dominik

Armidale, September 2016.
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Using genomic prediction for footrot resistance in sheep 
based on case-control industry data

Cecilia Esquivelzeta-Rabell1, Kim L. Bunter1, Daniel J. Brown1 and Mark Ferguson2

1Animal Genetics and Breeding Unit, a joint venture of NSW Department of Primary 
Industries and University of New England, UNE, Armidale, NSW 2351, Australia

2The New Zealand Merino Company, Christchurch NZ

Abstract
Footrot is a highly contagious hoof disease of sheep and other ungulates that has substantial 
welfare and economic impacts. The extent to which animals are affected by footrot is heritable. 
However, there are some significant operational limitations to applying traditional pedigree- 
based selection methods for increasing resistance to footrot. The New Zealand Merino sheep 
industry have investigated genomic tools in order to use unpedigreed industry animals with 
footrot phenotypes to predict genomic breeding values. It is imperative to evaluate the accuracy 
of such genomic predictions. Using cross-validation techniques and a range of reference data 
sets, we demonstrated a wide range in the average accuracy of prediction for genomic breeding 
values (GBVs). These were highest with large reference data sets (which included contrasts 
within flock) and were reduced with lower reference data set size and when predictions were 
made for flocks outside the reference set. Further analyses will be performed when industry 
genotypic data are finalised, including validation for sires in ram breeding flocks. However, 
this preliminary study suggests that there will be some merit for genomic selection against 
footrot based on industry data.

Footrot
Footrot is a highly contagious and difficult to manage hoof disease of sheep and other ungulates 
that has substantial welfare and economic impacts. Footrot begins as an interdigital dermatitis, 
which is followed by formation of lesions on the interdigital wall of the hoof and subsequent 
separation of the hard horn from the foot, called under-running (Bennet and Hickford, 2010). 
Footrot can result in poor feed intake, losses in production, a reduction in wool strength and 
in the worst cases, death from a combination of starvation, thirst and other systemic bacterial 
infections that occur in sheep that spend prolonged periods recumbent (Stewart, 1989). The 
disease involves the interaction between gram-negative anaerobic bacteria: Dichelobacter 
nodosus which helps with the transmission of the disease from infected sheep to soil or 
environment to uninfected sheep; and Fusobacterium necrophorum that causes the inflammation 
of the hoof and lameness (Burke and Parker, 2006).
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Footrot is one of the most costly diseases in sheep producing countries worldwide. This is 
due to both production losses and increased costs for preventive measures and the treatment 
of affected animals. Lane et al. (2015) estimated that footrot cost Australian producers 
$32M per year when virulent, or $12.1M when conditions were more benign, mostly due to 
production losses. Nieuwhof and Bishop (2005) calculated that a reduction in the incidence 
of footrot has a proportional effect on 42% of the costs associated with lost production and 
treatment of infected animals. Reducing the incidence of footrot in populations through genetic 
improvement is therefore a highly desirable option to improve welfare, and reduce production 
losses, prevention and treatment costs. Several studies have demonstrated that selection is 
feasible to prevent and reduce the incidence of footrot (Conington et al. 2008, Nieuwhof et 
al. 2008, Raadsma and Dhungvel 2013, Raadsma and Conington 2011, Raadsma et al. 1993, 
Raadsma et al. 1994, Skerman and Moorhouse 1987, Skerman et al.1988), but operational 
limitations must be considered.

Preliminary results

While it has been well established that genetic variation for footrot resistance is available 
for exploitation, industry-based breeding programs intended to reduce footrot genetically 
face several obstacles for the implementation of traditional genetic evaluation procedures, 
which require both pedigree and phenotype data. Firstly, stud (ram breeding) flocks wish 
to remain footrot free, particularly in countries like Australia or the UK where legislation 
restricts movements and sales of footrot affected animals. Therefore, footrot phenotypes are 
never realised in these flocks. Secondly, footrot challenges vary in field (industry) data, and 
differences in the observed incidence essentially depict variability in environmental factors 
and virulence, as well as genetics. Thirdly, footrot phenotypes need to be accurately scored on 
individual animals, distinct from other foot conditions, and with the knowledge of a common 
status (e.g. treated vs untreated animals). Finally, industry flocks are typically un-pedigreed, 
and therefore genetic connections between stud and industry flocks will generally be unknown. 
Since footrot phenotypes are relatively poorly recorded in stud flocks, and data should also 
represent the effects of multiple strains of footrot prevalent across a range of environments, 
using data from industry flocks has some merit.

In September 2010, the New Zealand Merino Company initiated a project aimed at developing a 
genomic breeding value for footrot, with the objective of targeting resistant animals for breeding 
to provide a permanent genetic solution for footrot. A range of data collection strategies have 
been employed. These include: 1) genotyping affected and unaffected animals in commercial 
industry flocks, and 2) more detailed scoring of phenotypes for footrot in central testing flocks. 
In this paper we investigate the accuracy of genomic predictions of footrot resistance from 
affected and unaffected animals in industry flocks, using cross validation techniques.
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Overview of data

Data were provided by the New Zealand Merino Company, comprising information from 
61 industry flocks, representing predominantly Merino sheep. The genomic data included 
50,000 SNP marker genotypes for a total of 4,543 animals, reported with affected/unaffected 
phenotypes for footrot. However, some flocks did not have genotypes available for both affected 
and unaffected animals at the time of analyses, and are therefore uninformative. Additional 
genotypic data was obtained for stud rams within the NZ Merino industry, which were widely 
used and which should have some (unknown) genetic relationships with flock rams producing 
progeny in the industry flocks. Genotyping was not performed for the flock rams or industry 
ewes, which had no phenotypic data of their own.

Footrot phenotypes

Footrot phenotypes can be recorded using different scoring strategies:

•	 Categorical scores from 0 to 5 per hoof (Egerton and Roberts 1971), being 0 for not 
affected and ranging from 1 to 5 to represent different degrees of severity of footrot, 
from water maceration (1) to chronic footrot (5).

•	 Binary scores: 0 for unaffected (clean) and 1 for affected sheep.

The first scoring method is the most informative because phenotypes represent variability 
of severity between animals and hooves, assuming constant challenge, and alternative trait 
definitions can be defined for analyses (e.g. average score, highest score). In contrast, binary 
scoring does not discriminate amongst individuals for the severity of infection within affected 
sheep.

In all participating industry flocks, footrot phenotype was scored as a binary trait, based on 
the presence of at least one severely affected foot (i.e. score 4 or 5) to define an affected 
animal. All affected animals were subsequently genotyped. “Clean” animals initially selected 
for genotyping were reassessed at a later date, and only those that remained unaffected over 
an extended challenge period were genotyped. Therefore, approximately twice as many clean 
animals were identified for genotyping initially, to make allowance for clean animals which 
were reassessed as affected prior to genotyping. Consequently, the case control data represented 
a contrast between animals with either severe infection or sustained resistance, within mob. 
The sample of animals genotyped was also targeted to obtain approximately equal numbers of 
animals which were affected and unaffected, within each flock. The preliminary distribution 
of unaffected versus affected animals per flock is shown in Figure 1, which demonstrates that 
this target was difficult to achieve across all flocks. Due to the normal commercial practices 
of syndicate mating and unsupervised lambing (i.e. no mothering up), traditional pedigree was 
not available in these industry flocks. Therefore, sampling of animals to be genotype could not 
be done on the basis of known pedigree relationships. Genotyped industry rams had no footrot 
phenotypes, and were not direct sires of lambs scored in the data. Informative flocks generally 
represented a single breed, with one exception.
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Figure 1. Number of animals with footrot phenotype 0 or 1 per flock

Genomic selection for binary traits

With the present availability of genomic data and the continuous improvement of the tools 
available for genomic analysis, investigation of hard to measure traits (e.g. footrot) has become 
possible through the analysis of data using genomic selection (Meuwissen et al., 2001). In 
principle genomic information can be used to predict continuous and categorical traits 
(Biscarini et al. 2014). Most of the literature available has focused on predicting continuous 
traits. However, there are few studies that focus on genomic predictions for categorical traits 
(Biscarini et al. 2014, González-Recio et al. 2008; Manor and Segal 2013, Ornella et al. 2014, 
Villanueva et al. 2011, Wang et al. 2013). So far the only genome wide association study to 
identify important molecular polymorphisms for footrot scores has been published by Mucha 
et al. (2015) for Texel sheep. Previous work on a specific genomic test developed in New 
Zealand for Merino and mid micron sheep breeds (Escayg et al. 1997, Hickford et al. 2004), 
based on the DQA2 gene marker in the MHC complex of genes, has been used to identify sires 
whose progeny will be more resistant to footrot in New Zealand Corriedale. However, the 
expected associations have subsequently not been observed with high enough accuracy to be 
useful in other breeds (Conington et al. 2008, Mark Ferguson, pers. comms, 2016), motivating 
further genomic work.
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Genomic Breeding Values for Footrot (GBV)

Preliminary genomic breeding values (GBV) for footrot status were generated for all animals 
using the GBLUP method with the following linear model:

where y is the vector for binary footrot phenotypes, b included fixed effects of contemporary 
group defined as farm, year of birth and sex; g is the vector of additive genetic effects accounted 
for by all marker information with g ~ N(0,Gσ2g), X and Z are incidence matrices relating fixed 
and additive genetic effects to phenotypes. The genomic relationship matrix (G) was constructed 
according to VanRaden (2008). Preliminary examination of the G (not presented) confirmed that 
animals genotyped were generally only lowly related, both within and between flocks, and with 
the genotyped stud rams. This demonstrated that when the number of animals genotyped is 
relatively low (N<100) for case-control sampling, common family structures (parent-offspring, 
half- and full-sibs) may not be evident in genotyped animals from industry flocks.

Cross validation

Cross validation was subsequently performed to establish the accuracy with which different sets 
of reference data could be used to predict footrot outcomes in other (non-reference) flocks. As 
with traditional breeding values, one of the advantages of genomic selection is the prediction 
of genetic merit for unobserved events (e.g. genomic breeding values, Hayes et al. 2009a). 
However, it is important to evaluate the accuracy of such predictions - one method to do this is 
k-fold cross validation.

It has previously been demonstrated that the accuracy of genomic selection, defined as the 
correlation between true and predicted genetic breeding values, depends on the reference 
population size (number of records), effective population size, genetic relationship between 
reference and validation populations, marker density, amount of linkage disequilibrium between 
quantitative trait locus and markers, and the effective number of chromosome segments, along 
with the heritability of the trait (Daetwyler et al. 2010, Goddard and Hayes 2009, Hayes et 
al. 2009b, Luan et al. 2009, Meuwissen 2009, de Roos et al. 2009, Toosi et al. 2010, Zhong 
et al. 2009) and the method to estimate marker effects (Meuwissen et al. 2001). Since the 
genetic relationships between animals and flocks in these data appeared to be low based on 
genomic relationships, we investigated how the construction of the reference population would 
influence the accuracy of prediction.

Reference data sets

Four different scenarios for the reference data sets were investigated. First, half of the animals 
from the entire population (N~1800) were randomly selected as reference set to estimate the 
genomic breeding values (GBV) for the rest of the population representing the validation set. 
This procedure was performed ten times, sampling new reference sets at random each time, to 
obtain the average correlation between predicted GBV and corrected phenotypes.
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The second scenario consisted of using information of all 32 effective Merino flocks (EMF, 
N=2771) to predict outcomes for the remaining 29 flocks, excluding each time in the reference 
set the flock being predicted, uninformative flocks and the flocks containing other breeds. An 
effective flock is defined as a flock in which both footrot phenotypes (affected or unaffected) 
were represented.

In the third scenario, only the 12 most informative Merino flocks (IMF, N=1166) were used 
to predict GBVs for the rest of the flocks. The most informative flocks were the subset of data 
with close to a 50:50 ratio of animals unaffected/affected and of reasonable size (at least 100 
animals or more genotyped within flock).

Finally, information from each effective Merino flock was used individually to estimate the 
GBVs for animals in other flocks.

Prediction accuracy

Prediction accuracy was calculated as:

,

where  corresponds to the footrot phenotype corrected for contemporary group using 
the complete data set and  is the square root of the heritability (Legarra et al. 2008). The 
heritability for footrot was assumed to be 0.30.

Evaluation of the predictive accuracy, estimated by comparing the GBVs with the true 
phenotypes corrected for contemporary group was investigated through cross validation. With 
random selection of approximately half the animals to include in the reference set, the prediction 
accuracy of GBV accuracies averaged across the 10 replicates was generally high (~0.56). 
However, when the reference data sets were restricted to EMF or IMF flock subsets, prediction 
accuracy varied from below 0 to 0.67 (Figures 2 & 3 pages 108 and 109), averaging 0.20 
(EMF=0.23, IMF=0.18). A negative accuracy reflected a negative correlation between predicted 
GBVs and adjusted phenotypes. In flocks with low accuracy, the proportion of animals whose 
phenotypes (affected vs unaffected) did not reflect predicted GBVs (excluding their own data) 
generally increased proportional to the incidence (mismatches – Figures 2 & 3 pages 108 and 
109). Using a single informative flock to predict the rest of the flocks, the prediction accuracy 
decreased to 0.06, on average, across flocks (results not shown). Low accuracy of prediction 
would be expected in this scenario.

These results illustrate the wide range in estimated accuracies for genomic prediction, 
depending on the industry reference data set used. Generally, reference animals present within 
the same flock maximised the accuracy of prediction for validation set animals. However, when 
predictions were made for flocks not included in the reference data, accuracy was increased 
using a larger reference set (eg EMF vs IMF). These results demonstrate that even without 
known pedigree structure and footrot data collected in an industry setting, GBVs had some 
predictive capacity. However, these estimates are affected by the magnitude of the assumed 
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heritability, which cannot be assessed from the data provided, and the case-control nature of 
animals sampled for genotyping. Therefore, further work is required to cross-validate GBVs 
derived from a case-control reference data set within other independent flocks where both 
genotypic and phenotypic data are available. This work will be performed when genotypic data 
in all industry flocks used in this study has been finalised.

Scoring to improve accuracy of genetic evaluation (genomic or otherwise)

Previous results have shown that there is loss of information when phenotypes are binary 
because the data reflects incidence but not severity, compared to other trait definitions which 
also accommodate differences in the severity of infection and the number of feet infected. 
Using a second data set from a central testing flock (pedigree known), it was demonstrated 
that using ordered scoring (0-5) and/or averaging scores across hooves increased estimates 
of heritability compared to estimates obtained from the binary (0/1) scores in these data. 
Similarly, a trait definition such as the highest score among hoofs is suboptimal in this respect 
because it represents one score on one hoof. Without standardised scoring across all industry 
data, difficulties during the data analysis (e.g. variance, scale, incidence issues) can be hard 
to overcome. Therefore, it is recommended that for future studies footrot scores should be 
recorded using an ordered 0 to 5 scale per hoof (Egerton and Roberts 1971), being 0 not affected 
and from 1 to 5 representing different degrees of severity of footrot.
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